PVA-based bulk microneedles capable of high insulin loading and pH-triggered degradation for multi-responsive and sustained hypoglycemic therapy

Yuhong Ma,Wei Wang, Mujiao He, Yunzhu Liu, Caihua Li, Yinan Zhong,Quanmin Bu,Dechun Huang,Hongliang Qian,Wei Chen

BIOMATERIALS SCIENCE(2024)

引用 0|浏览1
暂无评分
摘要
"Closed-loop" insulin-loaded microneedle patche shows great promise for improving therapeutic outcomes and life quality for diabetes patients. However, it is typically hampered by limited insulin loading capacity, random degradation, and intricate preparation procedures for the independence of the "closed-loop" bulk microneedles. In this study, we combined the solubility of microneedles and "closed-loop" systems and designed poly(vinyl alcohol)-based bulk microneedles (MNs@GI) through in situ photopolymerization for multi-responsive and sustained hypoglycemic therapy, which significantly simplified the preparation process and improved insulin loading. GOx/insulin co-encapsulated MNs@GI with a phenylboronic ester structure improved glycemic responsiveness to control the insulin release under high glucose conditions and reduced inflammation risk in the normal skin. MNs@GI could further degrade to increase insulin release due to the crosslinked acetal-linkage hydrolysis in the presence of gluconic acid, which was caused by GOx-mediated glucose-oxidation in a hyperglycemic environment. The in vivo results showed that MNs@GI effectively regulated glycemic levels within the normal range for approximately 10 h compared to that of only insulin-loaded microneedles (MNs@INS). Consequently, the highly insulin-loaded, multi-responsive, and pH-triggered MN system has tremendous potential for diabetes treatment. "Closed-loop" insulin-loaded microneedle patches show great promise for improving therapeutic outcomes and life quality for diabetes patients.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要