Analysis of Velocity Autocorrelation Functions from Molecular Dynamics Simulations of a Small Peptide by the Generalized Langevin Equation with a Power-Law Kernel

JOURNAL OF PHYSICAL CHEMISTRY B(2023)

引用 0|浏览2
暂无评分
摘要
Internal motions play an essential role in the biological functions of proteins and have been the subject of numerous theoretical and spectroscopic studies. Such complex environments are associated with anomalous diffusion where, in contrast to the classical Brownian motion, the relevant correlation functions have power law decays with time. In this work, we investigate the presence of long memory stochastic processes through the analysis of atomic velocity autocorrelation functions. Analytical expressions of the velocity autocorrelation function spectrum obtained through a Mori-Zwanzig projection approach were shown to be compatible with molecular dynamics simulations of a small helical peptide (8-polyalanine).
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要