Molecular characterization and antimicrobial activity of cecropin family in Hermetia illucens

Jian Peng,Lu Li, Yan Wan, Yifan Yang, Xiaoqin An, Kexin Yuan,Zhilang Qiu,Yinhui Jiang,Guo Guo,Feng Shen,Guiyou Liang

DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY(2024)

引用 0|浏览3
暂无评分
摘要
Antimicrobial peptides are potential alternatives to traditional antibiotics in the face of increasing bacterial resistance. Insects possess many antimicrobial peptides and have become a valuable source of novel and highly effective antimicrobial peptides. Hermetia illucens as a resource insect, for example, has the highest number of antimicrobial peptides of any dipteran. However, most antimicrobial peptides, especially cecropin, have not been comprehensively identified and have not been evaluated for their antimicrobial ability. In this study, we analyzed the localization and gene structure of 33 cecropin molecules in the H. illucens genome and evaluated their activity against common human pathogens. The results showed that 32 cecropin molecules were concentrated on 1 chromosome, most with 2 exons. More importantly, most of the cecropins had a good antibacterial effect against Gram-negative bacteria, and were not hemolytic. The minimum inhibitory concentration (MIC) of the cecropin designated H3 against E. coli was 4 mu g/mL. The toxicity, killing time kinetics, and anti-biofilm activity of H3 were further investigated and confirmed its antimicrobial ability. Overall, H3 is a potential candidate for the development of new antimicrobials to treat severe infections caused by Gram-negative pathogens such as E. coli.
更多
查看译文
关键词
Hermetia illucens,Cecropin,Antimicrobial peptides
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要