Competition for shared resources increases dependence on initial population size during coalescence of gut microbial communities.

Doran A Goldman,Katherine S Xue, Autumn B Parrott, Rashi R Jeeda, Lauryn R Franzese, Jaime G Lopez,Jean C C Vila,Dmitri A Petrov,Benjamin H Good,David A Relman,Kerwyn Casey Huang

bioRxiv : the preprint server for biology(2023)

引用 0|浏览1
暂无评分
摘要
The long-term success of introduced populations depends on their initial size and ability to compete against existing residents, but it remains unclear how these factors collectively shape colonization. Here, we investigate how initial population (propagule) size and resource competition interact during community coalescence by systematically mixing eight pairs of in vitro microbial communities at ratios that vary over six orders of magnitude, and we compare our results to a neutral ecological model. Although the composition of the resulting co-cultures deviated substantially from neutral expectations, each co-culture contained species whose relative abundance depended on propagule size even after ~40 generations of growth. Using a consumer-resource model, we show that this dose-dependent colonization can arise when resident and introduced species have high niche overlap and consume shared resources at similar rates. This model predicts that propagule size will have larger, longer-lasting effects in diverse communities in which niche overlap is higher, and we experimentally confirm that strain isolates show stronger dose dependence when introduced into diverse communities than in pairwise co-culture. This work shows how neutral-like colonization dynamics can emerge from non-neutral resource competition and have lasting effects on the outcomes of community coalescence.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要