Supraphysiological glutamine as a means of depleting intracellular amino acids to enhance pancreatic cancer chemosensitivity.

Research square(2023)

引用 0|浏览0
暂无评分
摘要
Limited efficacy of systemic therapy for pancreatic ductal adenocarcinoma (PDAC) patients contributes to high mortality. Cancer cells develop strategies to secure nutrients in nutrient-deprived conditions and chemotherapy treatment. Despite the dependency of PDAC on glutamine (Gln) for growth and survival, strategies designed to suppress Gln metabolism have limited effects. Here, we demonstrated that supraphysiological concentrations of glutamine (SPG) could produce paradoxical responses leading to tumor growth inhibition alone and in combination with chemotherapy. Integrated metabolic and transcriptomic analysis revealed that the growth inhibitory effect of SPG was the result of a decrease in intracellular amino acid and nucleotide pools. Mechanistically, disruption of the sodium gradient, plasma membrane depolarization, and competitive inhibition of amino acid transport mediated amino acid deprivation. Among standard chemotherapies given to PDAC patients, gemcitabine treatment resulted in a significant enrichment of amino acid and nucleoside pools, exposing a metabolic vulnerability to SPG-induced metabolic alterations. Further analysis highlighted a superior anticancer effect of D-glutamine, a non-metabolizable enantiomer of the L-glutamine, by suppressing both amino acid uptake and glutaminolysis, in gemcitabine-treated preclinical models with no apparent toxicity. Our study suggests supraphysiological glutamine could be a means of inhibiting amino acid uptake and nucleotide biosynthesis, potentiating gemcitabine sensitivity in PDAC.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要