Ultrasound-propelled nanomotors for efficient cancer cell ferroptosis

Ting Chen, Jie Yang,He Zhao,Dajian Li, Xiaoyong Luo, Zhiyu Fan,Biye Ren,Yuepeng Cai,Renfeng Dong

JOURNAL OF MATERIALS CHEMISTRY B(2024)

引用 0|浏览2
暂无评分
摘要
Ferroptosis is a non-apoptotic form of cell death that is dependent on the accumulation of intracellular iron that causes elevation of toxic lipid peroxides. Therefore, it is crucial to improve the levels of intracellular iron and reactive oxygen species (ROS) in a short time. Here, we first propose ultrasound (US)-propelled Janus nanomotors (Au-FeOx/PEI/ICG, AFPI NMs) to accelerate cellular internalization and induce cancer cell ferroptosis. This nanomotor consists of a gold-iron oxide rod-like Janus nanomotor (Au-FeOx, AF NMs) and a photoactive indocyanine green (ICG) dye on the surface. It not only exhibits accelerating cellular internalization (similar to 4-fold) caused by its attractive US-driven propulsion but also shows good intracellular motion behavior. In addition, this Janus nanomotor shows excellent intracellular ROS generation performance due to the synergistic effect of the "Fenton or Fenton-like reaction" and the "photochemical reaction". As a result, the killing efficiency of actively moving nanomotors on cancer cells is 88% higher than that of stationary nanomotors. Unlike previous passive strategies, this work is a significant step toward accelerating cellular internalization and inducing cancer-cell ferroptosis in an active way. These novel US-propelled Janus nanomotors with strong propulsion, efficient cellular internalization and excellent ROS generation are suitable as a novel cell biology research tool. Ultrasound-propelled Janus nanomotors exhibit rapid cellular internalization with the aid of an ultrasonic field and effectively induce cancer cell ferroptosis due to synergistic generated reactive oxygen species.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要