Quantum Matter near a Cosmological Singularity

Jorge Casalderrey-Solana,David Mateos, Alexandre Serantes

arxiv(2023)

引用 0|浏览3
暂无评分
摘要
General Relativity predicts that the spacetime near a cosmological singularity undergoes an infinite number of chaotic oscillations between different Kasner epochs with rapid transitions between them. This so-called BKL behaviour persists in the presence of several types of classical matter. Little is known in the presence of quantum effects. A major obstacle is the fact that the fast metric oscillations inevitably drive the matter far from equilibrium. We use holography to determine the evolution of the quantum stress tensor of a non-conformal, strongly-coupled, four-dimensional gauge theory in a Kasner spacetime. The stress tensor near the singularity is solely controlled by the ultraviolet fixed point of the gauge theory, and it diverges in a universal way common to all theories with a gravity dual. We then compute the backreaction of the stress tensor on the Kasner metric to leading order in the gravitational coupling. The modification of the Kasner exponents that we find suggests that the BKL behaviour may be avoided in the presence of quantum matter.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要