Lipid characteristics of lung tissue in silicosis rat model were studied based on lipid metabolomics

TOXICOLOGY LETTERS(2024)

引用 0|浏览0
暂无评分
摘要
Silicosis is a common occupational disease caused by the long-term inhalation of large amounts of silica dust. Lipid metabolism plays an important role in the progression of silicosis, but its contributing mechanism remains unclear. The aim of this study was to investigate the differential lipid metabolites and active metabolic pathways in silicosis rat lung tissue. We first constructed a silicosis rat model, and randomly divided 24 male SD rats into control group (C), silicosis group for 1 week (S1W), silicosis group for 2 weeks (S2W) and silicosis group for 4 weeks (S4W) with 6 rats in each group. 1 mL SiO2 suspension (50 mg/mL) or normal saline were injected into the trachea, and the rats were killed at 1 week, 2 weeks and 4 weeks, respectively. The lung tissue pathology of the rats was observed by HE staining and VG staining, and the plasma TC and FC levels were detected by the kit. Western blot was used to detect the expression of lipid-related factors CD36, PGC1 alpha and LXR. In addition, lipidomics analysis of lung tissue samples was performed using UPLC-IMS-QTOF mass spectrometer to screen out potential differential metabolites in silicosis models and analyze lipid enrichment, and verified the expression of differential gene CHPT1 in the metabolic pathway. HE and VG staining showed that the number of nodules and fibrosis increased in a time-dependent manner in the silicosis model group, and the levels of TC, FC and CE in silicosis plasma increased. Western blot results showed that PGC1 alpha and LXR decreased in the silicosis model group, while CD36 expression increased. In addition, metabolomics screened out 28 differential metabolites in the S1W group, 32 in the S2W group, and 22 in the S4W group, and found that the differential metabolites were mainly enriched in metabolic pathways such as glycerophospholipid metabolism and ether lipid metabolism, and the expression of differential gene CHPT1 in the metabolic pathway was decreased in the silicosis model group. These results suggest that there are significant changes in lipid metabolites in lung tissue in silicosis rat models, and glycerophospholipid metabolism was significantly enriched, suggesting that glycerophospholipids play an important role in the progression of silicosis. The differential metabolites and pathways reported in this study may provide new ideas for the pathogenesis of silicosis.
更多
查看译文
关键词
Silicosis,Lipid metabolomics,Lipidomics
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要