JASPER: fast, powerful, multitrait association testing in structured samples gives insight on pleiotropy in gene expression.

bioRxiv : the preprint server for biology(2023)

引用 0|浏览0
暂无评分
摘要
Joint association analysis of multiple traits with multiple genetic variants can provide insight into genetic architecture and pleiotropy, improve trait prediction and increase power for detecting association. Furthermore, some traits are naturally high-dimensional, e.g., images, networks or longitudinally measured traits. Assessing significance for multitrait genetic association can be challenging, especially when the sample has population sub-structure and/or related individuals. Failure to adequately adjust for sample structure can lead to power loss and inflated type 1 error, and commonly used methods for assessing significance can work poorly with a large number of traits or be computationally slow. We developed JASPER, a fast, powerful, robust method for assessing significance of multitrait association with a set of genetic variants, in samples that have population sub-structure, admixture and/or relatedness. In simulations, JASPER has higher power, better type 1 error control, and faster computation than existing methods, with the power and speed advantage of JASPER increasing with the number of traits. JASPER is potentially applicable to a wide range of association testing applications, including for multiple disease traits, expression traits, image-derived traits and microbiome abundances. It allows for covariates, ascertainment and rare variants and is robust to phenotype model misspecification. We apply JASPER to analyze gene expression in the Framingham Heart Study, where, compared to alternative approaches, JASPER finds more significant associations, including several that indicate pleiotropic effects, some of which replicate previous results, while others have not previously been reported. Our results demonstrate the promise of JASPER for powerful multitrait analysis in structured samples.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要