Design, Characterization and Control of a Whole-body Grasping and Perching (WHOPPEr) Drone

2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS(2023)

引用 0|浏览0
暂无评分
摘要
Flying robots can exploit perching abilities to position themselves on strategically-chosen locations and monitor the areas of interest from a critical vantage point. Moreover, they can significantly extend their battery life by turning off the propulsion systems when carrying out a surveillance mission. However, unknown disturbances arise from the physical interactions between the robot and the object, making it challenging to stabilize the robot during perching. In this paper, we present a Whole-body Grasping and Perching (WHOPPEr) Drone, which is capable of fast and robust perching by utilizing its entire body as the grasper in lieu of an add-on grasper. We first present the design concept, parameter selection and characterization of the novel whole-body grasping drone. Next, we analyze the grasping ability of the morphing chassis and present an aerodynamic analysis for the effect of motor thrust on the compliant arm. We finally demonstrate, via real-time experiments, the performance of WHOPPEr in autonomous perching and payload delivery tasks.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要