Volitional EMG Control Enables Stair Climbing with a Robotic Powered Knee Prosthesis.

Suzi Creveling, Marissa Cowan, Liam M Sullivan,Lukas Gabert,Tommaso Lenzi

Proceedings of the ... IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems(2023)

引用 0|浏览1
暂无评分
摘要
Existing controllers for robotic powered prostheses regulate the prosthesis speed, timing, and energy generation using predefined position or torque trajectories. This approach enables climbing stairs step-over-step. However, it does not provide amputees with direct volitional control of the robotic prosthesis, a functionality necessary to restore full mobility to the user. Here we show that proportional electromyographic (EMG) control of the prosthesis knee torque enables volitional control of a powered knee prosthesis during stair climbing. The proposed EMG controller continuously regulates knee torque based on activation of the residual hamstrings, measured using a single EMG electrode located within the socket. The EMG signal is mapped to a desired knee flexion/extension torque based on the prosthesis knee position, the residual limb position, and the interaction with the ground. As a result, the proposed EMG controller enabled an above-knee amputee to climb stairs at different speeds, while carrying additional loads, and even backwards. By enabling direct, volitional control of powered robotic knee prostheses, the proposed EMG controller has the potential to improve amputee mobility in the real world.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要