Wetting-and scaling-resistant superhydrophobic hollow fiber membrane with hierarchical surface structure for membrane distillation

JOURNAL OF MEMBRANE SCIENCE(2024)

引用 0|浏览4
暂无评分
摘要
In this study, we address the challenge of wetting and scaling in membrane distillation (MD) by developing a robust superhydrophobic poly(vinylidene fluoride) (PVDF) hollow fiber membrane. To achieve this, we utilized co-extrusion technology and subsequent fluorination treatment to create micro-nanoscale surfaces. The fabrication process involved extruding a SiO2 suspension onto the outermost layer of a triple-orifice spinneret to create a hierarchical structure, followed by 1H,1H,2H,2H-perfluorooctyltrichlorosilane (FAS) modification to lower the membrane surface energy. This resulted in a highly water-repellant membrane, as evidenced by contact angle measurements of 153 degrees, 147 degrees, and 141 degrees for water, sodium dodecyl sulfate (SDS) solution (0.4 mM), and saline SDS solution (0.4 Mm SDS and 35 wt% NaCl), respectively, indicating increased resistance to liquid penetration. Through direct contact membrane distillation (DCMD) experiments, we demonstrated that the PVDF/FAS membrane exhibited excellent wetting resistance to seawater (3.5 wt% of NaCl) with SDS at varying concentrations. Furthermore, the membrane effectively hindered the CaSO4 scaling by reducing both heterogeneous nucleation and the tendency of bulk crystal deposition on the membrane outer surface. Overall, the developed approach for fabrication of superhydrophobic PVDF hollow fiber membrane presents a promising solution for facile and scalable manufacturing of anti-wetting and anti-scaling MD membranes. This advancement has significant implications for enhancing the practical application of MD technology.
更多
查看译文
关键词
Co-extrusion technology,Hierarchical structure,Superhydrophobic membrane,Membrane distillation,Anti-wetting,Anti-scaling
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要