A Versatile Photocrosslinkable Silicone Composite for 3D Printing Applications

ADVANCED MATERIALS TECHNOLOGIES(2024)

引用 0|浏览2
暂无评分
摘要
Embedded printing has emerged as a valuable tool for fabricating complex structures and microfluidic devices. Currently, an ample of amount of research is going on to develop new materials to advance its capabilities and increase its potential applications. Here, a novel, transparent, printable, photocrosslinkable, and tuneable silicone composite is demonstrated that can be utilized as a support bath or an extrudable ink for embedded printing. Its properties can be tuned to achieve ideal rheological properties, such as optimal self-recovery and yield stress, for use in 3D printing. When used as a support bath, it facilitated the generation microfluidic devices with circular channels of diameter up to 30 mu m. To demonstrate its utility, flow focusing microfluidic devices are fabricated for generation of Janus microrods, which can be easily modified for multitude of applications. When used as an extrudable ink, 3D printing of complex-shaped constructs are achieved with integrated electronics, which greatly extends its potential applications toward soft robotics. Further, its biocompatibility is tested with multiple cell types to validate its applicability for tissue engineering. Altogether, this material offers a myriad of potential applications (i.e., soft robotics, microfluidics, bioprinting) by providing a facile approach to develop complicated 3D structures and interconnected channels. In this study, a transparent, printable, photocrosslinkable, and tuneable silicone composite that can be utilized as a support bath or an extrudable ink is demonstrated for embedded printing. When used as a support bath, it facilitates the generation microfluidic devices with circular channels of diameter up to 30 mu m. When used as an extrudable ink, 3D printing of complex-shaped constructs is achieved with integrated electronics, which greatly extends its potential applications toward soft robotics. image
更多
查看译文
关键词
3D printing,embedded printing,microfluidics,photocrosslinkable silicone,silicone composite,soft matter
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要