A deep learning model for the detection of various dementia and MCI pathologies based on resting-state electroencephalography data: A retrospective multicentre study

NEURAL NETWORKS(2024)

引用 0|浏览9
暂无评分
摘要
Dementia and mild cognitive impairment (MCI) represent significant health challenges in an aging population. As the search for noninvasive, precise and accessible diagnostic methods continues, the efficacy of electroencephalography (EEG) combined with deep convolutional neural networks (DCNNs) in varied clinical settings remains unverified, particularly for pathologies underlying MCI such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and idiopathic normal-pressure hydrocephalus (iNPH). Addressing this gap, our study evaluates the generalizability of a DCNN trained on EEG data from a single hospital (Hospital #1). For data from Hospital #1, the DCNN achieved a balanced accuracy (bACC) of 0.927 in classifying individuals as healthy (n = 69) or as having AD, DLB, or iNPH (n = 188). The model demonstrated robustness across institutions, maintaining bACCs of 0.805 for data from Hospital #2 (n = 73) and 0.920 at Hospital #3 (n = 139). Additionally, the model could differentiate AD, DLB, and iNPH cases with bACCs of 0.572 for data from Hospital #1 (n = 188), 0.619 for Hospital #2 (n = 70), and 0.508 for Hospital #3 (n = 139). Notably, it also identified MCI pathologies with a bACC of 0.715 for Hospital #1 (n = 83), despite being trained on overt dementia cases instead of MCI cases. These outcomes confirm the DCNN's adaptability and scalability, representing a significant stride toward its clinical application. Additionally, our findings suggest a potential for identifying shared EEG signatures between MCI and dementia, contributing to the field's understanding of their common pathophysiological mechanisms.
更多
查看译文
关键词
Dementia screening,Mild cognitive impairment,Alzheimer 's disease,Dementia with Lewy bodies,Idiopathic normal-pressure hydrocephalus,Multiple centres
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要