Recent progress in engineering Clostridium autoethanogenum to synthesize the biochemicals and biocommodities

Sai Wan,Mingchi Lai, Xinyu Gao, Mingxin Zhou, Song Yang, Qiang Li,Fuli Li,Lin Xia,Yang Tan

Synthetic and Systems Biotechnology(2024)

引用 0|浏览4
暂无评分
摘要
Excessive mining and utilization fossil fuels has led to drastic environmental consequences, which will contribute to global warming and cause further climate change with severe consequences for the human population. The magnitude of these challenges requires several approaches to develop sustainable alternatives for chemicals and fuels production. In this context, biological processes, mainly microbial fermentation, have gained particular interest. For example, autotrophic gas-fermenting acetogenic bacteria are capable of converting CO, CO2 and H2 into biomass and multiple metabolites through Wood-Ljungdahl pathway, which can be exploited for large-scale fermentation processes to sustainably produce bulk biochemicals and biofuels (e.g. acetate and ethanol) from syngas. Clostridium autoethanogenum is one representative of these chemoautotrophic bacteria and considered as the model for the gas fermentation. Recently, the development of synthetic biology toolbox for this strain has enabled us to study and genetically improve their metabolic capability in gas fermentation. In this review, we will summarize the recent progress involved in the understanding of physiological mechanism and strain engineering for C. autoethanogenum, and provide our perspectives on the future development about the basic biology and engineering biology of this strain.
更多
查看译文
关键词
Genetic engineering,Clostridium autoethanogenum,Gas fermentation,Carbon fixation,Biofuel
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要