3D Printed Rechargeable Aqueous and Non-Aqueous Lithium-Ion Batteries: Evolution of Design and Performance

ECS Advances(2023)

引用 0|浏览0
暂无评分
摘要
Here we describe the modeling and design evolution of vat polimerized (Vat-P) stereolithographic apparatus (SLA) 3D printed coin cell-type aqueous and non-aqueous rechargeable lithium-ion batteries, cases and current collectors. We detail the rationale for design evolution that improved performance, handling and assembly of the printed batteries. Some guidance into the modeling, 3D printing process, material choice, chemical and electrochemical stability, assembly, sealing, and performance of 3D printed Li-ion batteries is outlined. 3D printed Li-ion batteries demonstrated promising results in terms of gravimetric capacity, rate capability, and capacity per unit footprint area compared to conventional coin cells in both aqueous and non-aqueous systems. For aqueous cells, the cell level capacity is a factor of 2–3x higher than similar metal coin cells due to the lighter weight and better rate response. We also outline design requirements for a Vat-P printed battery that are compatible with organic carbonate-based electrolytes, where the cell provides 115 mAh g ^−1 specific capacity using an LiCoO _2 –graphite chemistry, which is only ∼20% less than the maximum reversible capacity of LCO. Despite the challenges faced in optimizing the design and materials for 3D printed Li-ion batteries, this study provides valuable information for future research and development.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要