Engineering of a Hybrid g-C3N4/ZnO-W/Cox Heterojunction Photocatalyst for the Removal of Methylene Blue Dye

Catalysts(2023)

引用 0|浏览1
暂无评分
摘要
Robust hybrid g-C3N4/ZnO-W/Cox heterojunction composites were synthesized using graphitic carbon nitride (g-C3N4) and ZnO-W nanoparticles (NPs) and different concentrations of Co dopant. The hybrid heterojunction composites were prepared by simple and low-cost coprecipitation methods. The fabricated catalyst was explored and investigated using various characterization techniques such as FTIR, XRD, FESEM and EDX. The surface morphology of the as-prepared hybrid nanocomposites with particle sizes in the range of 15–16 nm was validated by SEM analysis. The elemental composition of the synthesized composites was confirmed by EDS analysis. Photocatalysis using a photon as the sole energy source is considered a challenging approach for organic transformations under ambient conditions. The photocatalytic activity of the heterojunctions was tested by photodegrading methylene blue (MB) dye in the presence of sunlight. The reduced band gap of the heterojunction composite of 3.22–2.28 eV revealed that the incorporation of metal ions played an imperative role in modulating the light absorption range for photocatalytic applications. The as-synthesized g-C3N4/ZnO-W/Co0.010 composite suppressed the charge recombination ability during the photocatalytic degradation of methylene blue (MB) dye. The ternary heterojunction C3N4/ZnO-W/Co0.010 composite showed an impressive photocatalytic performance with 90% degradation of MB under visible light within 90 min of irradiation, compared to the outcomes achieved with the other compositions. Lastly, the synthesized composites showed good recyclability and mechanical stability over five cycles, confirming them as promising photocatalyst options in the future.
更多
查看译文
关键词
g-c3n4/zno-w/cox heterojunction photocatalyst,dye,blue
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要