Modulation of the biocatalytic activity and selectivity of CeO2 nanozymes via atomic doping engineering

Nanoscale(2023)

引用 5|浏览0
暂无评分
摘要
Artificial enzymes show prospects in biomedical applications due to their stable enzymatic catalytic activity and ease of preparation. CeO2 nanozymes represent a versatile platform showing multiple enzyme-mimicking activities, although their biocatalytic activities and selectivity are relatively poor for biomedical use. Herein, we developed Mn- and Co-doped CeO2 nanozymes (M/CeO2, M = Mn or Co) via atomic engineering to achieve a significant increase in enzyme-like activity. The M/CeO2 nanozymes exhibited outstanding peroxidase-like activity with a reaction rate about 8-10 times higher than that of CeO2. Importantly, the Co/CeO2 nanozyme preferred for catalase-like activity with a 4-6-fold higher catalytic rate than CeO2, while the Mn/CeO2 nanozyme had a predilection for improving the superoxide dismutase-like capacity. This indicated the selective modulation of enzyme-mimicking activities via atomic doping engineering. Cellular level experiments revealed the in vitro therapeutic effects of the nanozymes. Mn/CeO2 and Co/CeO2 selectively modulated the intracellular redox imbalance in lipopolysaccharide (LPS)- or H2O2-stimulated nerve cells and improved cell survival. This work provides a feasible strategy for the design of catalytically selective artificial enzymes and facilitates the widespread application of CeO2 nanozymes in redox-related diseases.
更多
查看译文
关键词
biocatalytic activity,nanozymes,ceo<sub>2</sub>,doping
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要