Dysregulation of osteocyte sema3a by mechanical load and inflammation may drive neuroplasticity and pain in osteoarthritis

Orthopaedic Proceedings(2023)

引用 0|浏览2
暂无评分
摘要
OBJECTIVE Changes in subchondral bone are one of few disease characteristics to correlate with pain in OA 1 . Profound neuroplasticity and nociceptor sprouting is displayed within osteoarthritic (OA) subchondral bone and is associated with pain and pathology 2 . The cause of these neural changes remains unestablished. Correct innervation patterns are indispensable for bone growth, homeostasis, and repair. Axon guidance signalling factor, Sema3A is essential for the correct innervation patterning of bony tissues 3 , expressed in osteocytes 4 and known to be downregulated in bone OA mechanical loading 5 . Bioinformatic analysis has also shown Sema3a as a differentially expressed pathway by bone in human OA patients 6 .HYPOTHESIS: Pathological mechanical load and inflammation of bone causes dysregulation of Sema3A signalling leading to perturbed sensory nerve plasticity and pain. METHODS Human KOLF2-C1 iPSC derived nociceptors were generated by TALEN-mediated insertion of transcription factors NGN2+Brn3A and modified chambers differentiation protocol to produce nociceptor-like cells. Nociceptor phenotype was confirmed by immunocytochemistry. Human Y201-MSC cells were embedded in 3D type-I collagen gels (0.05 × 106 cell/gel), in 48-well plates and silicone plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) and soluble IL-6 receptor (sIL-6r (40ng/ml), IL6/sIL6r and mechanical load mimetic Yoda1 (5μM) or unstimulated (n=5/group) (48-well plates) or were mechanically loaded in silicone plates (5000μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). Conditioned media transfer was performed from osteocyte to nociceptor cultures assessed by continuous 24-hour phase contrast confocal microscopy. 24-hours after stimulation RNA was quantified by RT-qPCR (IL6) or RNAseq whole transcriptome analysis/DEseq2 analysis (Load). Protein release was quantified by ELISA. Normally distributed data with homogenous variances was analysed by two-tailed t test. RESULTS IPSC-derived nociceptor-like cells display elongated (>5mm) dendritic projections and nociceptive molecular markers such as TUJ1, PrPH and Neun and TrkA. Sema3A signalling ligands were expressed in 100% of osteocyte cultures. Mechanical loading regulated the Sema3 pathway; Sema3A (0.4-fold, p<0.001), Sema3B (13-fold, p<0.001), Sema3C (0.4-fold, p<0.001). Under inflammatory stimulation by IL6/IL6sR, SEMA3A (7-fold, p=0.01) and receptor Plexin1 (3-fold, p=0.03) show significant regulation. Sema3A protein release showed a significant downregulation of Sema3A release by IL6/sIL6r+Yoda1 (2-fold, p=0.02). Continuous 24-hour phase contrast confocal microscopy measuring the number of extending/retreating dendritic projections revealed that sensory nerve cultures exposed to media from osteocytes stimulated with IL-6/sIL-6R+Yoda1 displayed significantly more invading dendritic projections (p=0.0175, 12-fold±SEM 3.5) across 3 random fields of view within a single stimulated neural culture and significantly fewer retracting dendritic projections (p=0.0075, 2-fold±SEM 0.33) compared to controls. CONCLUSIONS Here we show osteocytic regulation of Sema3A under pathological mechanical loading and the ability of media pathologically loaded osteocyte cultures to induce the branching and invasion of cultured nociceptor-like cells as displayed in OA subchondral bone. Declaration of Interest (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要