Construction of a point-of-care electrochemical biosensor for Escherichia coli 16S rRNA analysis based on MoS2 nanoprobes

ANALYST(2023)

引用 0|浏览1
暂无评分
摘要
Foodborne pathogens are harmful to human health because they can contaminate food and induce diseases. To efficiently distinguish and determine foodborne bacteria, an ultrasensitive point-of-care electrochemical biosensor was designed for 16S rRNA detection by coupling a signal amplification strategy with MoS2-based nanoprobes. Gold nanoparticles and thionine co-functionalized molybdenum disulfide (MoS2) nanocomposites (MoS2-Thi-AuNPs) were used to construct nanoprobes, which can efficiently monitor the detection process and amplify the detection signal. In the presence of Escherichia coli (E. coli) 16S rRNA, a classical sandwiched DNA structure was formed on the surface of a hierarchical flower-like gold nanostructure-decorated screen-printed carbon electrode (HFGN-SPCE), generating an obvious electrochemical signal from Thi. Under optimal conditions, this designed electrochemical biosensor showed a wide dynamic range (0-1.0 x 10(6) fM), low detection limit (2.8 fM), high selectivity and accepted stability for E. coli 16S rRNA detection in ideal buffers. Moreover, this biosensor can efficiently determine 16S rRNA in milk samples and 10 CFU mL(-1) bacterial lysate. All experimental results suggested that this biosensor has a promising application in the detection of foodborne pathogens.
更多
查看译文
关键词
electrochemical biosensor,rrna analysis,point-of-care
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要