AI-based Classification of Three Common Malignant Tumors in Neuro-oncology: A Multi-Institutional Comparison of Machine Learning and Deep Learning Methods.

Journal of Neuroradiology(2023)

引用 1|浏览7
暂无评分
摘要
To determine if machine learning (ML) or deep learning (DL) pipelines perform better in AI-based three-class classification of glioblastoma (GBM), intracranial metastatic disease (IMD) and primary CNS lymphoma (PCNSL). Retrospective analysis included 502 cases for training (208 GBM, 67 PCNSL and 227 IMD), with external validation on 86 cases (27:27:32). Multiparametric MRI images (T1W, T2W, FLAIR, DWI and T1-CE) were co-registered, resampled, denoised and intensity normalized, followed by semi-automatic 3D segmentation of the enhancing tumor (ET) and peritumoral region (PTR). Model performance was assessed using several ML pipelines and 3D-convolutional neural networks (3D-CNN) using sequence specific masks, as well as combination of masks. All pipelines were trained and evaluated with 5-fold nested cross-validation on internal data followed by external validation using multi-class AUC. Two ML models achieved similar performance on test set, one using T2-ET and T2-PTR masks (AUC: 0.885, 95% CI: [0.816, 0.935] and another using T1-CE-ET and FLAIR-PTR mask (AUC: 0.878, CI: [0.804, 0.930]). The best performing DL models achieved an AUC of 0.854, (CI [0.774, 0.914]) on external data using T1-CE-ET and T2-PTR masks, followed by model derived from T1-CE-ET, ADC-ET and FLAIR-PTR masks (AUC: 0.851, CI [0.772, 0.909]). Both ML and DL derived pipelines achieved similar performance. T1-CE mask was used in three of the top four overall models. Additionally, all four models had some mask derived from PTR, either T2WI or FLAIR.
更多
查看译文
关键词
malignant tumors,deep learning,deep learning methods,three common malignant tumors,ai-based,neuro-oncology,multi-institutional
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要