Water and chloride as allosteric inhibitors in WNK kinase osmosensing

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览0
暂无评分
摘要
ABSTRACT Previous observations showed that chloride and osmotic stress regulate the autophosphorylation and activity of the kinase domains of WNK1 and WNK3. Further, prior crystallography on the asymmetric dimeric of the unphosphorylated WNK1 kinase domain (WNK1/S382A, WNK1/SA) revealed conserved waters in the active site. Here we show by crystallography that PEG400 applied to crystals of dimeric WNK1/SA grown in space group P1 induces de-dimerization with a change in space group to P2 1 . Both the conserved waters, referred to here as conserved water network 1 (CWN1) and the chloride binding site are disrupted by PEG400. CWN1 is surrounded and stabilized by a pan-WNK-conserved cluster of charged residues. Here we mutagenized these charges in WNK3 to probe the importance of the CWN1 to WNK regulation. Two mutations at E314 in the Activation Loop (WNK3/E314Q and WNK3/E314A) enhanced activity, consistent with the idea that the CWN1 is inhibitory. Mutations of other residues in the cluster had similar or less activity than wild-type. PEG400 activation of WNK3 was not significantly reduced in the point mutants tested. The crystallographic and assay data support a role for CWN1 and the charged cluster in stabilizing an inactive configuration of WNKs and suggest that water functions as an allosteric inhibitor of WNKs.
更多
查看译文
关键词
wnk kinase,allosteric inhibitors,chloride
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要