Orientational Order in Spin-Cast Lead-Iodide Perovskite Nanocrystal Solids

CHEMISTRY OF MATERIALS(2023)

引用 0|浏览2
暂无评分
摘要
Combined synthetic control over size and composition renders colloidal lead-halide perovskite nanocrystals a tunable platform for high-efficiency optoelectronic applications. However, the properties and operational stability of devices based on nanocrystal solids are often dictated by the method of the evaporation-induced assembly. Ubiquitous slow evaporation techniques can produce highly ordered nanocrystal domains but limit the prospects for scalable fabrication of continuous device layers, calling for investigation of approaches to more rapidly form ordered perovskite nanocrystal solids. Here, we study orientationally ordered lead-iodide perovskite nanocrystal solids prepared by conventional spin coating with molecular additives (excess ligand) to enhance ordering within the arrays. In situ X-ray scattering measurements reveal that orientational ordering occurs rapidly upon solvent removal during spin coating and can be further enhanced by manipulating the spin speed. We vary the additive ligand length and explore trade-offs between ordering and layered perovskite impurity formation. Arrays treated with the intermediate-length octylamine ligand exhibit increased in-plane electronic conductivity, suggesting orientational ordering and internanocrystal electronic coupling can be enhanced by the treatment. These results highlight the prospects of establishing long-range order in lead-halide perovskite nanocrystal solids by using simple and fast coating methods.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要