JWST and ALMA imaging of dust-obscured, massive substructures in a typical $z \sim 3$ star-forming disk galaxy

arXiv (Cornell University)(2023)

引用 0|浏览0
暂无评分
摘要
We present an identification of dust-attenuated star-forming galactic-disk substructures in a typical star-forming galaxy (SFG), UDF2, at $z = 2.696$. To date, substructures containing significant buildup of stellar mass and actively forming stars have yet to be found in typical (i.e., main-sequence) SFGs at $z > 2$. This is due to the strong dust attenuation common in massive galaxies at the epoch and the scarcity of high-resolution, high-sensitivity extinction-independent imaging. To search for disk substructures, we subtracted the central stellar-mass disk from the JWST/NIRCam rest-frame 1.2 $\mu$m image ($0.13''$ resolution) and subtracted, in the visibility plane, the central starburst disk from ALMA rest-frame 240 $\mu$m observations ($0.03''$ resolution). The residual images revealed substructures at rest-frame 1.2 $\mu$m co-located with those found at rest-frame 240 $\mu$m, $\simeq 2$ kpc away from the galactic center. The largest substructure contains $\simeq20$% of the total stellar mass and $\simeq5$% of the total SFR of the galaxy. While UDF2 exhibits a kinematically-ordered velocity field of molecular gas consistent with a secularly evolving disk, more sensitive observations are required to characterize the nature and the origin of this substructure (spiral arms, minor merger, or other types of disk instabilities). UDF2 resides in an overdense region ($N \geqslant 4$ massive galaxies within 70 kpc projected distance at $z=2.690-2.697$) and the substructures may be associated with interaction-induced instabilities. Importantly, a statistical sample of such substructures identified with JWST and ALMA could play a key role in bridging the gap between the bulge-forming starburst and the rest of the galaxy.
更多
查看译文
关键词
disk galaxy,alma imaging,massive substructures,dust-obscured,star-forming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要