Antimalarial Drug Resistance Profiling ofPlasmodium falciparumInfections in India Using Next-Generation Sequencing

medRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览2
暂无评分
摘要
Abstract Background Tracking the emergence and spread of antimalarial drug resistance has become critical to sustaining progress towards the control and eventual elimination of malaria in South Asia, especially India. Methods An amplicon sequencing protocol was used for high-throughput molecular surveillance of antimalarial drug resistance in a total of 158 isolates at three sites in India: Chennai, Nadiad and Rourkela. Five genes of the Plasmodium falciparum implicated in antimalarial resistance were investigated here; Pfcrt for chloroquine resistance, Pfdhfr for pyrimethamine resistance, Pfdhps for sulfadoxine resistance, Pfk13 for artemisinin resistance and Pfmdr1 for resistance to multiple antimalarials. Results Mutations in the propeller domain of PfK13 were observed in two samples only, however these mutations are not validated for artemisinin resistance. A high proportion of parasites from the P. falciparum dominant site Rourkela showed wild-type Pfcrt and Pfdhfr haplotypes, while mutant Pfcrt and Pfdhfr haplotypes were fixed at the P. vivax dominant sites Chennai and Nadiad. The wild-type PfDHPS haplotype was predominant across all study sites. Finally, we observed the largest proportion of suspected multi-clonal infections at Rourkela, which has the highest transmission of P. falciparum among our study sites. Conclusion This is the first simultaneous high-throughput next generation sequencing of five complete P. falciparum genes from infected patients in India.
更多
查看译文
关键词
of<i>plasmodium falciparum</i>infections,drug resistance,next-generation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要