Uncovering the Enhancement Mechanism of the Oxygen Reduction Reaction on Perovskite/Ruddlesden–Popper Oxide Heterostructures (Nd,Sr)CoO3/(Nd,Sr)2CoO4 and (Nd,Sr)CoO3/(Nd,Sr)3Co2O7

Journal of Physical Chemistry Letters(2023)

引用 3|浏览0
暂无评分
摘要
Although the perovskite (Nd,Sr)CoO3 (NSC113)/Ruddlesden-Popper (R-P) oxide (Nd,Sr)2CoO4 (NSC214) heterostructure is reported to improve the oxygen reduction reaction (ORR) activity by 2-3 orders of magnitude, the enhancement mechanism remains unclear. For the first time, we conclude that there are two main factors that can enhance the ORR activity: (1) Oxygen adsorbed on such heterostructures would gain more electrons, promoting the oxygen adsorption. (2) The more distant rock-salt layers on the heterointerfaces can facilitate the insertion of interstitial oxygen and form a high-speed transport channel of interstitial oxygen. Moreover, the perovskite/double-layered R-P oxide heterostructure, which has not been reported yet, is predicted to have better ORR performance than the perovskite/single-layered R-P oxide heterostructure. Our work elucidates the ORR enhancement mechanism on perovskite/R-P oxide heterostructures from the atomic level, which is demonstrated by experiments and, thus, is very meaningful for the development of high-performance electrochemical devices.
更多
查看译文
关键词
perovskite/ruddlesden–popper oxide heterostructures,oxygen reduction reaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要