Prominent energy storage density and efficiency of Na0.5Bi0.5TiO3‐based ceramics via multiscale amelioration strategy

Journal of the American Ceramic Society(2023)

引用 0|浏览1
暂无评分
摘要
Abstract Eco‐friendly ceramic capacitors gradually become an important section of pulsed power devices. However, the synchronous realization of ultra‐high energy storage density ( W rec > 6 J/cm 3 ) and efficiency ( η > 90%) is difficult. Thus, a novel multiscale amelioration strategy in Na 0.5 Bi 0.5 TiO 3 ‐based ceramics is proposed to achieve ultra‐high energy storage density and efficiency. The multiscale amelioration strategy for (Na 0.5 Bi 0.47 La 0.03 ) 0.94 Ba 0.06 TiO 3 (NBLBT) ceramic focuses on grain size, bandgap width, and dielectric relaxor behavior, which can be regulated by introducing Sr(Al 0.5 Nb 0.25 Ta 0.25 )O 3 (SANT). On the one hand, the refined grain size and increased bandgap width are conducive to improving the breakdown strength. On the other hand, the optimized dielectric relaxation behavior is beneficial to suppress the remanent polarization. Accordingly, an ultrahigh W rec = 6.89 J/cm 3 and η = 90.1% are simultaneously achieved in 0.84NBLBT‐ 0.16SANT ceramic. In addition, the sample synchronously possesses excellent thermal and frequency stability (a variation within 5% in W rec and η ), transient discharge rate of t 0.9 ∼ 78.8 ns and a high‐power density of P D ∼ 114.5 MW/cm 3 . This study provides an effective strategy to further develop pulsed power devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要