Dielectric Matching by the Unique Dynamic Dipoles in Hybrid Organic/Inorganic Superlattices toward Ultrathin Microwave Absorber

Small(2023)

引用 1|浏览1
暂无评分
摘要
There is an urgent demand of ultrathin high-performance microwave absorbing materials (MAMs) in the electromagnetic protection field. However, minimizing thickness is challenging mainly due to dielectric mismatch at high permittivity from excessive dielectric loss, leading to strong reflection at 2-18 GHz. Here, a hybrid TaS2 /Co(Cp)2 superlattice is fabricated with alternating [TaS2 ] inorganic layers and [Co(Cp)2 ] organic layers. Dynamic Ta─Co dipoles offer a unique interfacial polarization relaxation mechanism involving the inversion and rotation of dynamic Ta─Co dipoles. The prolonged relaxation time of limited dynamic Ta─Co dipoles contributes to enhanced dielectric matching at high permittivity, which is essential for ultrathin high-performance MAMs. Furthermore, the confinement of paramagnetic Co(Cp)2 molecules in the interlayer space of the diamagnetic TaS2 sublattice triggers unexpected ferromagnetism via interfacial magnetic coupling conducive to the improved microwave-absorbing performance at reduced thickness. Therefore, it presents a 1.271-mm thick ultrathin absorber that can attenuate up to 99.99% of electromagnetic wave energy with a broad effective absorption bandwidth of 4.05 GHz, thus pushing the limits of thickness of 2D-based high-performance MAMs. This paper demonstrates a new strategy toward ultrathin MAMs with tunable and decent electromagnetic loss derived from electrical and magnetic coupling at the atomic scale.
更多
查看译文
关键词
organic/inorganic superlattices,unique dynamic dipoles,hybrid organic/inorganic,microwave
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要