Direct observation of N\'eel-type skyrmions and domain walls in a ferrimagnetic DyCo$_3$ thin film

arXiv (Cornell University)(2023)

引用 0|浏览7
暂无评分
摘要
Isolated magnetic skyrmions are stable, topologically protected spin textures that are at the forefront of research interests today due to their potential applications in information technology. A distinct class of skyrmion hosts are rare earth - transition metal (RE-TM) ferrimagnetic materials. To date, the nature and the control of basic traits of skyrmions in these materials are not fully understood. We show that for an archetypal ferrimagnetic material DyCo$_3$ that exhibits a strong perpendicular anisotropy, the ferrimagnetic skyrmion size can be tuned by an external magnetic field. Moreover, by taking advantage of the high spatial resolution of scanning transmission X-ray microscopy (STXM) and utilizing a large x-ray magnetic linear dichroism (XMLD) contrast that occurs naturally at the RE resonant edges, we resolve the nature of the magnetic domain walls of ferrimagnetic skyrmions. We demonstrate that through this method one can easily discriminate between Bloch and N\'eel type domain walls for each individual skyrmion. For all isolated ferrimagnetic skyrmions, we observe that the domain walls are of N\'eel-type. This key information is corroborated with results of micromagnetic simulations and allows us to conclude on the nature of the Dzyaloshinskii-Moriya interaction (DMI) which concurs to the stabilisation of skyrmions in this ferrimagnetic system. Establishing that an intrinsic DMI occurs in RE-TM materials will also be beneficial towards a deeper understanding of chiral spin texture control in ferrimagnetic materials.
更多
查看译文
关键词
domain walls,thin film,eel-type
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要