Deterministic quantum state generators and stabilizers from nonlinear photonic filter cavities

arxiv(2023)

引用 0|浏览0
暂无评分
摘要
Quantum states of light, particularly at optical frequencies, are considered necessary to realize a host of important quantum technologies and applications, spanning Heisenberg-limited metrology, continuous-variable quantum computing, and quantum communications. Nevertheless, a wide variety of important quantum light states are currently challenging to deterministically generate at optical frequencies. In part, this is due to a relatively small number of schemes that prepare target quantum states given nonlinear interactions. Here, we present an especially simple concept for deterministically generating and stabilizing important quantum states of light, using only simple third-order optical nonlinearities and engineered dissipation. We show how by considering either a nonlinear cavity with frequency-dependent outcoupling, or a chain of nonlinear waveguides, one can "filter" out all but a periodic ladder of photon number components of a density matrix. As examples of this phenomenon, we show cavities which can stabilize squeezed states, as well as produce "photon-number-comb" states. Moreover, in these types of filter cavities, Glauber coherent states will deterministically evolve into Schrodinger cat states of a desired order. We discuss potential realizations in quantum nonlinear optics. More broadly, we expect that combining the techniques introduced here with additional "phase-sensitive" nonlinearities (such as second-order nonlinearity) should enable passive stabilization and generation of a wider variety of states than shown here.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要