The Cm14-3-3μ protein and CCT transcription factor CmNRRa delay flowering in chrysanthemum

Journal of Experimental Botany(2023)

引用 2|浏览5
暂无评分
摘要
The floral transition from vegetative to reproductive growth is pivotal in the plant life cycle. NUTRITION RESPONSE AND ROOT GROWTH (OsNRRa), as a CONSTANS, CONSTANS-LIKE, TOC1 (CCT) domain protein, delays flowering in rice, and an orthologous protein, CmNRRa, inhibits flowering in chrysanthemum; however, the underlying mechanism remains unknown. In this study, using yeast two-hybrid screening, we identified the 14-3-3 protein family member Cm14-3-3µ as a CmNRRa-interacting protein. A combination of bimolecular fluorescence complementation, pull-down, and co-immunoprecipitation assays was performed to confirm the physical interaction between CmNRRa and Cm14-3-3µ. In addition, expression analysis showed that CmNRRa but not Cm14-3-3µ responded to the diurnal rhythm, whereas both genes were highly expressed in leaves. Moreover, the function of Cm14-3-3µ in flowering time regulation was similar to that of CmNRRa. Furthermore, CmNRRa repressed chrysanthemum FLOWERING LOCUS T-like 3 (CmFTL3) and an APETALA 1 (AP1)/FRUITFULL (FUL)-like gene (CmAFL1) but induced TERMINAL FLOWER1 (CmTFL1) directly by binding to their promoters. Cm14-3-3µ enhanced the ability of CmNRRa to regulate the expression of these genes. These findings suggest that there is a synergistic relationship between CmNRRa and Cm14-3-3µ in flowering repression in chrysanthemum.
更多
查看译文
关键词
transcription
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要