Molecular docking and simulation studies against nucleoside diphosphate kinase (NDK) of Pseudomonas aeruginosa with secondary metabolite identified by genome mining from paenibacillusehimensis

Journal of Biomolecular Structure & Dynamics(2023)

引用 1|浏览1
暂无评分
摘要
Pseudomonas aeruginosa is one of the leading opportunistic pathogens that causes nosocomial pneumonia and mostly in people with cystic fibrosis. In the present study, an in-silicoapproach was adopted to identify the novel drug target against Pseudomonas aeruginosa by employing subtractive genomics and molecular docking studies. Each step in the subtractive genomics scrutinized the bacterial proteome and determined a potential drug target against Pseudomonas aeruginosa. 71 essential proteins were obtained from the subcellular localization method that resides in the extracellular region. Metabolic pathways were studied to elucidate the unique pathways where the involvement of proteins present in the pathogen was predicted and a total of 6 unique pathways were determined. By, Genome mining of the source organism Paenibacillusehimensis, 9 ligands were obtained. The molecular docking analysis between the binding site of target protein NDK and ligands was carried out by employing the AutoDock Vina tool. Based on the highest binding affinity, Paenibactin, AnabaenopeptinNZ857 and Nostamide A complex with NDK protein with a lower binding energy of −7.5 kcal/mol, −7.4and −7.2 kcal/molrespectively were considered for the simulation studies. Molecular dynamics simulation studies showed the ligand in complex with protein was highly stable and rigid for a duration of 150 ns. For Paenibactin, AnabaenopeptinNZ857 and Nostamide Acomplex with protein, RMSD plot showed a deviation of ∼0.2-0.3 nm till ∼30ns/50 ns-110ns and further stabilized. The radius of the gyration plot clearly showed that the values stayed at ∼1.45 nm- 1.55 nm showing compactness and stability. The SASA stayed at the range ∼80nm2 and at least one total number of hydrogen bonds was shown throughout the 150 ns simulation for all three possible ligand-protein complexes. In the RMSF plot, the maximum fluctuation was ranged from ∼0.4-0.42 nm at the range between ∼57ns-60ns.The Paenibactin, AnabaenopeptinNZ857 and Nostamide A complex with NDK protein showed a stable, rigid and compact interaction throughout the simulation of duration 150 ns.Communicated by Ramaswamy H. Sarma
更多
查看译文
关键词
<i>pseudomonas aeruginosa</i>,diphosphate kinase,molecular docking,genome mining
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要