Bifunctional TiO2− nanofibers enhanced gel polymer electrolyte for high performance lithium metal batteries

Journal of Energy Chemistry(2023)

引用 0|浏览0
暂无评分
摘要
Exploration of advanced gel polymer electrolytes (GPEs) represents a viable strategy for mitigating dendritic lithium (Li) growth, which is crucial in ensuring the safe operation of high energy density Li metal batteries (LMBs). Despite this, the application of GPEs is still hindered by inadequate ionic conductivity, low Li+ transference number, and subpar physicochemical properties. Herein, TiO2−x nanofibers (NF) with oxygen vacancy defects were synthesized by a one-step process as inorganic fillers to enhance the thermal/mechanical/ionic-transportation performances of composite GPEs. Various characterizations and theoretical calculations reveal that the oxygen vacancies on the surface of TiO2−x NF accelerate the dissociation of LiPF6, promote the rapid transfer of free Li+, and influence the formation of LiF-enriched solid electrolyte interphase. Consequently, the composite GPEs demonstrate enhanced ionic conductivity (1.90 mS cm−1 at room temperature), higher lithium-ion transference number (0.70), wider electrochemical stability window (5.50 V), superior mechanical strength, excellent thermal stability (210 °C), and improved compatibility with lithium, resulting in superior cycling stability and rate performance in both Li||Li, Li||LiFePO4, and Li||LiNi0.8Co0.1Mn0.1O2 cells. Overall, the synergistic influence of nanofiber morphology and enriched oxygen vacancy structure of fillers on electrochemical properties of composite GPEs is comprehensively investigated, thus, it is anticipated to shed new light on designing high-performance GPEs LMBs.
更多
查看译文
关键词
gel polymer electrolyte,high performance lithium,performance lithium,tio2−
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要