Protective non-neutralizing mAbs targets conserved opsonic epitopes on SARS-CoV-2 variants

bioRxiv (Cold Spring Harbor Laboratory)(2023)

引用 0|浏览2
暂无评分
摘要
Abstract Antibodies play a central role in the immune defense against SARS-CoV-2. There is substantial evidence supporting that Fc-mediated effector functions of anti-spike antibodies contribute to anti-SARS-Cov-2 immunity. We have previously shown that two non-neutralizing but opsonic mAbs, Ab81 and Ab94, are protective against lethal Wuhan SARS-CoV-2 infection in mice. The protective effect was comparable to a potent neutralizing antibody, Ab59. Here, we hypothesized that, unlike the neutralizing antibodies, non-neutralizing opsonic antibodies would have a higher likelihood of retaining their function to the mutated variants, potentially functioning as broadly protective mAbs. Most of the mutations on the SARS-CoV-2 variants cluster on neutralizing epitopes, leaving other epitopes unaltered. We observed that neutralizing antibodies lost binding to Omicron. In contrast, seven non-neutralizing opsonic antibodies retained nanomolar affinity towards Omicron, BA.2, BA.4, and BA.5. Focusing on the two protective non-neutralizing antibodies Ab81 and Ab94, we showed that they maintain their strong reactivity even to XBB, XBB1.5, and BQ1.1. In the case of Ab94, interestingly, it even has increased affinity towards all variants except for XBB, which is comparable to WT. Finally, we show that Ab94 and Ab81 have potent Fc-mediated functions in vitro against the XBB and BQ1.1 and that combining the mAbs in a cocktail further enhances the effect. These results show that protective non-neutralizing mAbs such as Ab94 and Ab81 can be a viable strategy for anti-SARS-CoV-2 mAb therapies against current and possibly future SARS-CoV-2 variants and that opsonic epitopes could have implications for vaccine design.
更多
查看译文
关键词
opsonic epitopes,non-neutralizing,sars-cov
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要