Kinetically controlled metal-elastomer nanophases for environmentally resilient stretchable electronics

NATURE COMMUNICATIONS(2024)

引用 0|浏览8
暂无评分
摘要
Nanophase mixtures, leveraging the complementary strengths of each component, are vital for composites to overcome limitations posed by single elemental materials. Among these, metal-elastomer nanophases are particularly important, holding various practical applications for stretchable electronics. However, the methodology and understanding of nanophase mixing metals and elastomers are limited due to difficulties in blending caused by thermodynamic incompatibility. Here, we present a controlled method using kinetics to mix metal atoms with elastomeric chains on the nanoscale. We find that the chain migration flux and metal deposition rate are key factors, allowing the formation of reticular nanophases when kinetically in-phase. Moreover, we observe spontaneous structural evolution, resulting in gyrified structures akin to the human brain. The hybridized gyrified reticular nanophases exhibit strain-invariant metallic electrical conductivity up to 156% areal strain, unparalleled durability in organic solvents and aqueous environments with pH 2-13, and high mechanical robustness, a prerequisite for environmentally resilient devices. Metal-elastomer nanophases are critical for stretchable electronics but face mixing challenges. This study introduces a kinetic method for precise mixing, yielding gyrified nanophases with improved durability and strain-invariant conductivity, which holds promise for resilient stretchable devices.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要