Synergistic Interface Engineering of RuO2/Co3O4 Heterostructures for Enhanced Overall Water Splitting in Acidic Media

Advanced energy and sustainability research(2023)

引用 1|浏览6
暂无评分
摘要
Designing nanocomposites with heterointerface as bifunctional electrocatalysts is a potential strategy to overcome the intrinsic activity limitation of electrocatalytic water splitting in acidic media, but it remains challenging. Herein, the highly efficient RuO 2 /Co 3 O 4 electrocatalyst with a uniform nanoflower structure is prepared by hydrothermal growth combined with interface engineering. Benefiting from the unique nanostructure, the migration of electrons and intermediates is optimized by the sufficient exposure of abundant micropores and defects. Moreover, the formation of strong electronic interaction at the RuO 2 /Co 3 O 4 heterointerfaces boosts the electrochemical active surface area and accelerates the reaction kinetics, which effectively improve the catalytic activity and stability of the catalyst. Based on enhanced intrinsic activity and electron transfer, the as‐synthesized RuO 2 /Co 3 O 4 displays impressive hydrogen evolution reaction and oxygen evolution reaction activity, which respectively require low overpotentials of 240 and 100 mV to achieve a current density of 10 mA cm −2 in 0.5 m H 2 SO 4 . As a bifunctional electrode, RuO 2 /Co 3 O 4 exhibits a low operating voltage of 1.58 V at 10 mA cm −2 for overall electrochemical water splitting. This study demonstrates the importance of heterostructure engineering in providing an avenue to achieve acid‐stable bifunctional electrocatalysts for energy conversion applications.
更多
查看译文
关键词
enhanced overall water splitting,heterostructures,ruo<sub>2</sub>/co<sub>3</sub>o<sub>4</sub>
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要