Sustainable Approaches to Incorporate Plant-Based Biomaterials in Power Generation

SOLIDS(2023)

引用 0|浏览0
暂无评分
摘要
Biomass-derived materials have traditionally been used to generate electrical energy through the combustion of their organic components. However, within the past few years, certain common biomass compounds, especially plant-based products such as cellulose and lignin, have drawn attention in the energy field due to their wide availability, low cost, and chemical versatility. In the case of cellulose, the combination of crystalline and amorphous domains, along with the high surface area and abundance of hydroxyl groups, has allowed for its application in multiple devices to harvest energy from the environment. However, to date, there are no reviews focusing on the different approaches that have been developed to implement these sustainable materials in the generation of renewable energies and the desirable material properties for these applications. This manuscript reviews alternative ways that have been developed to exploit biomass compounds in power generation, especially cellulose and lignin. Three different types of energy harvesting are discussed: mechanical, osmotic, and thermal energy. In the case of mechanical energy, the application of plant-derived materials in piezoelectric and triboelectric generators is described. In both cases, approaches where the biomass material has an active role in power generation instead of acting as a mechanical support are reported. For osmotic energy, the performance of inverse electrodialysis systems and the use of plant-derived materials, including the chemical modifications carried out to allow for their use for energy generation, was reviewed. Finally, for thermal energy generation, the reported work on biopolymer-based devices that work using thermoelectricity has been summarised. In each case, the latest advances in the field from the materials science perspective and the reported performance were described. Hybrid approaches involving the combination of biomass materials with other components have also been considered and compared with the performance obtained using biopolymers alone. Current limitations and opportunities are, finally, discussed to offer an overview of the current landscape and indicate future directions of the field.
更多
查看译文
关键词
triboelectric,piezoelectric,cellulose,lignin,osmotic energy,thermoelectric
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要