Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution

CHINESE CHEMICAL LETTERS(2024)

引用 0|浏览2
暂无评分
摘要
Achieving a high carrier migration efficiency by constructing built-in electric field is one of the promising approaches for promoting photocatalytic activity. Herein, we have designed a donor-acceptor (D-A) crystalline carbon nitride (APMCN) with 4-amino-2,6-dihydroxypyrimidine (AP) as electron donor, in which the pyrimidine ring was well embedded in the heptazine ring via hydrogen-bonding effect during hydrothermal process. The APMCN shows superior charge-transfer due to giant built-in electric field (5.94 times higher than pristine carbon nitride), thereby exhibiting excellent photocatalytic H2 evolution rate (1350 mu mol/h) with a high AQY (62.8%) at 400 nm. Mechanistic analysis based on detailed experimental investigation together with theoretical analysis reveals that the excellent photocatalytic activity is attributed to the promoted charge separation by the giant internal electric field originated from the D-A structure. (c) 2024 Published by Elsevier B.V. on behalf of Chinese Chemical Society and Institute of Materia Medica, Chinese Academy of Medical Sciences.
更多
查看译文
关键词
Crystalline carbon nitride,Built-in electric field,Donor-acceptor structure,Photocatalysis,Hydrogen production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要