Calcium-based pellets for continuous hydrogen production by sorption-enhanced steam methane reforming

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY(2024)

引用 0|浏览1
暂无评分
摘要
Sorption-enhanced steam methane reforming (SESMR) can produce high-purity H-2 in one step, while removing CO2 to reduce carbon emissions. The sorbents, catalysts or bifunctional composite used in this system typically exist in powder form, which is difficult to use in industrialized fluidized bed reactors. Granulation can effectively avoid reactor clogging, increase practicality and operability of the system. In this work, Al-modified CaO-based sorbents were granulated using the graphite-casting method and test its sorption-enhanced hydrogen production effects during methane steam reforming. The effects of granulation on the microstructure, carbonation reactivity and mechanical properties were characterized. The reaction conditions (temperature and water-gas ratio) and the combination method of catalyst and sorbent (powder mixing, pellets mixing, layered placement and bifunctional materials mixed evenly at the molecular level) on hydrogen yield were investigated. Results showed that CaO-based pellets after granulation had a fluffy and porous structure, exhibited excellent adsorption performance under low CO2 partial pressure. The average crushing load of 75Ca25Al and 15Ni70Ca15Al pellets exceeded 6 N, showing good mechanical strength. The optimal reaction temperature range was found to be 550-600 degrees C. Increasing the water-gas ratio and reducing the flow rate were effective ways of improving CH4 conversion and H-2 purity. The bifunctional 15Ni70Ca15Al powder prepared by sol-gel method had no catalytic effect on CH4-H2O reforming at 600 degrees C. After granulation, the catalytic performance was improved and the purity of H-2 reached 95%, but it declined rapidly during multiple SESMR cycles. In the case of mixed of two pellets (catalyst and sorbent), the outlet H-2 reached almost 100% with no decay observed over 15 cycles. When the switching time of feed gas was set to 60 min, high-purity (>96%) hydrogen can be produced continuously for 600 min on the parallel two fixed-bed reactors.(c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
CaO sorbent,Ni catalyst,Hydrogen,Granulation,Methane steam reforming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要