FiTMuSiC: leveraging structural and (co)evolutionary data for protein fitness prediction

Matsvei Tsishyn,Gabriel Cia, Pauline Hermans,Jean Kwasigroch,Marianne Rooman,Fabrizio Pucci

Human Genomics(2024)

引用 0|浏览3
暂无评分
摘要
Systematically predicting the effects of mutations on protein fitness is essential for the understanding of genetic diseases. Indeed, predictions complement experimental efforts in analyzing how variants lead to dysfunctional proteins that in turn can cause diseases. Here we present our new fitness predictor, FiTMuSiC, which leverages structural, evolutionary and coevolutionary information. We show that FiTMuSiC predicts fitness with high accuracy despite the simplicity of its underlying model: it was among the top predictors on the hydroxymethylbilane synthase (HMBS) target of the sixth round of the Critical Assessment of Genome Interpretation challenge (CAGI6) and performs as well as much more complex deep learning models such as AlphaMissense. To further demonstrate FiTMuSiC’s robustness, we compared its predictions with in vitro activity data on HMBS, variant fitness data on human glucokinase (GCK), and variant deleteriousness data on HMBS and GCK. These analyses further confirm FiTMuSiC’s qualities and accuracy, which compare favorably with those of other predictors. Additionally, FiTMuSiC returns two scores that separately describe the functional and structural effects of the variant, thus providing mechanistic insight into why the variant leads to fitness loss or gain. We also provide an easy-to-use webserver at https://babylone.ulb.ac.be/FiTMuSiC , which is freely available for academic use and does not require any bioinformatics expertise, which simplifies the accessibility of our tool for the entire scientific community.
更多
查看译文
关键词
Protein variants interpretation,Fitness,CAGI6,Pathogenicity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要