The radiomic biomarker in non-small cell lung cancer: 18F-FDG PET/CT characterisation of programmed death-ligand 1 status

Yübo Wang,Xinghua He, Xinbo Song,Man Li, Dingliang Zhu,Fanwei Zhang,Qingling Chen, Yao Lu,Ying Wang

Clinical Radiology(2023)

引用 0|浏览0
暂无评分
摘要
•Need non-invasive PD-L1 status predictor for NSCLC to guide anti-PD-L1 treatment. •PET metabolic parameters have limitations in measuring PD-L1 status. •This study aims to create a PET/CT radiomic signature to predict PD-L1 status. Aim To present an integrated 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomic characterisation of programmed death-ligand 1 (PD-L1) status in non-small-cell lung cancer (NSCLC). Materials and methods In this retrospective study, 18F-FDG PET/CT images and clinical data of 394 eligible patients were divided into training (n=275) and test sets (n=119). Next, the corresponding nodule of interest was segmented manually on the axial CT images by radiologists. After which, the spatial position matching method was used to match the image positions of CT and PET, and radiomic features of the CT and PET images were extracted. Radiomic models were built using five different machine-learning classifiers and the performance of the radiomic models were further evaluated. Finally, a radiomic signature was established to predict the PD-L1 status in patients with NSCLC using the features in the best performing radiomic model. Results The radiomic model based on the PET intranodular region determined using the logistic regression classifier preformed best, yielding an area under the receiver operating characteristics curve (AUC) of 0.813 (95% CI: 0.812, 0.821) on the test set. The clinical features did not improve the test set AUC (0.806, 95% CI: 0.801, 0.810). The final radiomic signature for PD-L1 status was consisted of three PET radiomic features. Conclusion This study showed that an 18F-FDG PET/CT-based radiomic signature could be used as a non-invasive biomarker to discriminate PD-L1-positive from PD-L1-negative in patients with NSCLC. To present an integrated 2-[18F]-fluoro-2-deoxy-d-glucose (18F-FDG) positron-emission tomography (PET)/computed tomography (CT) radiomic characterisation of programmed death-ligand 1 (PD-L1) status in non-small-cell lung cancer (NSCLC). In this retrospective study, 18F-FDG PET/CT images and clinical data of 394 eligible patients were divided into training (n=275) and test sets (n=119). Next, the corresponding nodule of interest was segmented manually on the axial CT images by radiologists. After which, the spatial position matching method was used to match the image positions of CT and PET, and radiomic features of the CT and PET images were extracted. Radiomic models were built using five different machine-learning classifiers and the performance of the radiomic models were further evaluated. Finally, a radiomic signature was established to predict the PD-L1 status in patients with NSCLC using the features in the best performing radiomic model. The radiomic model based on the PET intranodular region determined using the logistic regression classifier preformed best, yielding an area under the receiver operating characteristics curve (AUC) of 0.813 (95% CI: 0.812, 0.821) on the test set. The clinical features did not improve the test set AUC (0.806, 95% CI: 0.801, 0.810). The final radiomic signature for PD-L1 status was consisted of three PET radiomic features. This study showed that an 18F-FDG PET/CT-based radiomic signature could be used as a non-invasive biomarker to discriminate PD-L1-positive from PD-L1-negative in patients with NSCLC.
更多
查看译文
关键词
radiomic biomarker,pet/ct characterisation,cancer,f-fdg,death-ligand
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要