High-speed flexible near-infrared organic photodiode for optical communication

NATIONAL SCIENCE REVIEW(2024)

引用 0|浏览7
暂无评分
摘要
Optical communication is a particularly compelling technology for tackling the speed and capacity bottlenecks in data communication in modern society. Currently, the silicon photodetector plays a dominant role in high-speed optical communication across the visible-near-infrared spectrum. However, its intrinsic rigid structure, high working bias and low responsivity essentially limit its application in next-generation flexible optoelectronic devices. Herein, we report a narrow-bandgap non-fullerene acceptor (NFA) with a remarkable pi-extension in the direction of both central and end units (CH17) with respect to the Y6 series, which demonstrates a more effective and compact 3D molecular packing, leading to lower trap states and energetic disorders in the photoactive film. Consequently, the optimized solution-processed organic photodetector (OPD) with CH17 exhibits a remarkable response time of 91 ns (lambda = 880 nm) due to the high charge mobility and low parasitic capacitance, exceeding the values of most commercial Si photodiodes and all NFA-based OPDs operating in self-powered mode. More significantly, the flexible OPD exhibits negligible performance attenuation (<1%) after bending for 500 cycles, and maintains 96% of its initial performance even after 550 h of indoor exposure. Furthermore, the high-speed OPD demonstrates a high data transmission rate of 80 MHz with a bit error rate of 3.5 x 10(-4), meaning it has great potential in next-generation high-speed flexible optical communication systems.
更多
查看译文
关键词
flexible organic photodetector,high-speed NIR organic photodetector,optical communication,light fidelity,narrow-bandgap non-fullerene acceptors
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要