Investigating chirality in quorum sensing by analysis ofBurkholderia cepaciaandVibrio fischeriwith comprehensive chiral LC–MS/MS and GC–MS/MS methods

Fems Microbiology Letters(2023)

引用 0|浏览5
暂无评分
摘要
N-acyl homoserine lactones (N-HLs) are signaling molecules used by Gram-negative bacteria in a phenomenon called quorum sensing. Bacteria will detect N-HLs as a way of monitoring their population which, upon reaching a critical level, will express a specific phenotype. An example is the expression of bioluminescence by Vibrio fischeri. Most studies have not considered the chirality of these molecules nor have they used highly sensitive detection methods. Here, the production of d,l-N-HLs are monitored for V. fischeri, Burkholderia cepacia, Pseudomonas fluorescens, and P. putida, using highly sensitive tandem mass spectrometry analysis. Novel N-HLs are reported for both V. fischeri and B. cepacia, including a plethora of previously unknown d-N-HLs, including the first d-N-HLs containing oxo and hydroxy functionalities. Anomalously, N-HLs were not detected in any cultures of P. fluorescens and P. putida, which are species that previously were reported to produce N-HLs. However, it is apparent that differences in the reported occurrence and levels of N-HLs can result from (a) different strains of bacteria, (b) different growth media and environmental conditions, and (c) sometimes false-positive results from detection methodologies. Time studies of V. fischeri suggest the possibility that separate synthetic and elimination pathways exist between d- and l-N-HLs. Possible biological processes that could be the source of d-N-HL production are considered.
更多
查看译文
关键词
comprehensive chirality lc–ms/ms,quorum
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要