Wigner transport in linear electromagnetic fields

JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL(2024)

引用 0|浏览0
暂无评分
摘要
Applying a Weyl-Stratonovich transform to the evolution equation of the Wigner function in an electromagnetic field yields a multidimensional gauge-invariant equation which is numerically very challenging to solve. In this work, we apply simplifying assumptions for linear electromagnetic fields and the evolution of an electron in a plane (two-dimensional transport), which reduces the complexity and enables to gain first experiences with a gauge-invariant Wigner equation. We present an equation analysis and show that a finite difference approach for solving the high-order derivatives allows for reformulation into a Fredholm integral equation. The resolvent expansion of the latter contains consecutive integrals, which is favorable for Monte Carlo solution approaches. To that end, we present two stochastic (Monte Carlo) algorithms that evaluate averages of generic physical quantities or directly the Wigner function. The algorithms give rise to a quantum particle model, which interprets quantum transport in heuristic terms.
更多
查看译文
关键词
Wigner formalism,electromagnetic fields,gauge-invariance,particle Monte Carlo method
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要