Proton Shuttling by Polyaniline of High Brønsted Basicity for Improved Electrocatalytic Ethylene Production from CO2

Angewandte Chemie(2023)

引用 0|浏览2
暂无评分
摘要
Abstract Hybrid organic/inorganic composites with the organic phase tailored to modulate local chemical environment at the Cu surface arise as an enchanting category of catalysts for electrocatalytic CO 2 reduction reaction (CO 2 RR). A fundamental understanding on how the organics of different functionality, polarity, and hydrophobicity affect the reaction path is, however, still lacking to guide rational catalyst design. Herein, polypyrrole (PPy) and polyaniline (PANI) manifesting different Brønsted basicity are compared for their regulatory roles on the CO 2 RR pathways regarding *CO coverage, proton source and interfacial polarity. Concerted efforts from in situ IR, Raman and operando modelling unveil that at the PPy/Cu interface with limited *CO coverage, hydridic *H produced by the Volmer step favors the carbon hydrogenation of *CO to form *CHO through a Tafel process; Whereas at the PANI/Cu interface with concentrated CO 2 and high *CO coverage, protonic H + shuttled through the benzenoid ‐NH‐ protonates the oxygen of *CO, yielding *COH for asymmetric coupling with nearby *CO to form *OCCOH under favored energetics. As a result of the tailored chemical environment, the restructured PANI/Cu composite demonstrates a high partial current density of 0.41 A cm −2 at a maximal Faraday efficiency of 67.5 % for ethylene production, ranking among states of the art.
更多
查看译文
关键词
improved electrocatalytic ethylene production,polyaniline,co2,proton
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要