Smith-specific regulatory T cells halt the progression of lupus nephritis

Peter J. Eggenhuizen,Rachel M. Y. Cheong, Cecilia Lo, Janet Chang, Boaz H. Ng,Yi Tian Ting, Julie A. Monk,Khai L. Loh, Ashraf Broury, Elean S. V. Tay, Chanjuan Shen,Yong Zhong, Steven Lim, Jia Xi Chung,Rangi Kandane-Rathnayake,Rachel Koelmeyer,Alberta Hoi,Ashutosh Chaudhry, Paolo Manzanillo,Sarah L. Snelgrove,Eric F. Morand,Joshua D. Ooi

Nature Communications(2024)

引用 0|浏览6
暂无评分
摘要
Antigen-specific regulatory T cells (Tregs) suppress pathogenic autoreactivity and are potential therapeutic candidates for autoimmune diseases such as systemic lupus erythematosus (SLE). Lupus nephritis is associated with autoreactivity to the Smith (Sm) autoantigen and the human leucocyte antigen (HLA)-DR15 haplotype; hence, we investigated the potential of Sm-specific Tregs (Sm-Tregs) to suppress disease. Here we identify a HLA-DR15 restricted immunodominant Sm T cell epitope using biophysical affinity binding assays, then identify high-affinity Sm-specific T cell receptors (TCRs) using high-throughput single-cell sequencing. Using lentiviral vectors, we transduce our lead Sm-specific TCR into Tregs derived from patients with SLE who are anti-Sm and HLA-DR15 positive. Compared with polyclonal mock-transduced Tregs, Sm-Tregs potently suppress Sm-specific pro-inflammatory responses in vitro and suppress disease progression in a humanized mouse model of lupus nephritis. These results show that Sm-Tregs are a promising therapy for SLE.
更多
查看译文
关键词
lupus nephritis,smith-specific
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要