Biomechanical Behavior Evaluation of a Mandibular Full-Arch Implant-Supported Prosthesis on ZrO2 and TiO2 Monotype Dental Implants

International journal of odontostomatology(2023)

引用 0|浏览1
暂无评分
摘要
This in silico study aimed to evaluate the biomechanical behavior of a full-arch implant-supported prosthesis on titanium and zirconia monotype implants. A 3D mandible containing 1.0 mm thick cortical and cancellous bone was modeled. Four dental implants (3.3 x 10 mm) were inserted into the jaw model in each model. The implants consisted of Titanium (Ti-S group) and Zirconia Monotype/one-piece (Zr-S group). Fixed full-arch implant-supported prostheses were cemented onto the implant. The models were exported to the analysis software and divided into meshes composed of nodes and tetrahedral elements. All materials were considered isotropic, elastic, and homogeneous. Therefore, all contacts were considered bonded, the mandible model was fixed in all directions, applying a static structural axial load of 300 N on the bottom of the fossa of the left mola r teeth. Microstrain and von-Mises stress (MPa) were adopted as failure criteria. Comparable stress and strain values were shown in the peri-implant bone for both groups. However, the Ti-S group presented a lower stress value (1,155.8 MPa) than the Zr-S group (1,334.2 MPa). Regarding bone tissues, the Ti-S group presented 612 µε and the Zr-S group presented 254 µε. The highest strain peak was observed in bone tissues around the implant closer to the load for both groups. Evaluating monotype zirconia and titanium implants, it is suggested that the greater the rigidity of the implant, the greater the concentration of internal stre sses and the less dissipation to the surrounding tissues. Therefore, monotype ceramic implants composed of yttrium-stabilized tetragonal polycrystalline zirconia may be a viable alternative to titanium implants for full-arch prostheses.
更多
查看译文
关键词
prosthesis,biomechanical behavior evaluation,mandibular,tio2,full-arch,implant-supported
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要