Buried Interface Engineering Enables Efficient and 1,960‐hour Isos‐L‐2i Stable Inverted Perovskite Solar Cells

Advanced Materials(2023)

引用 0|浏览10
暂无评分
摘要
High-performance perovskite solar cells (PSCs) typically require interfacial passivation, yet this is challenging for the buried interface, owing to the dissolution of passivation agents during the deposition of perovskites. Here, we overcome this limitation with in-situ buried interface passivation - achieved via directly adding a cyanoacrylic acid-based molecular additive, namely BT-T, into the perovskite precursor solution. Classical and ab-initio molecular dynamics simulations reveal that BT-T spontaneously may self-assemble at the buried interface during the formation of the perovskite layer on a nickel oxide hole transporting layer. The preferential buried interface passivation results in facilitated hole transfer and suppressed charge recombination. In addition, residual BT-T molecules in the perovskite layer enhance its stability and homogeneity. We report a power-conversion efficiency (PCE) of 23.48% for 1.0 cm2 inverted-structure PSCs. The encapsulated PSC retains 95.4% of its initial PCE following 1,960-hour maximum power point tracking under continuous light illumination at 65°C (i.e., ISOS-L-2I protocol). Our demonstration of operating-stable PSCs under accelerated ageing conditions represents a step closer to the commercialization of this emerging technology. This article is protected by copyright. All rights reserved.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要