Aeolus impact on Volcanic Ash early warning systems for Aviation

Research Square (Research Square)(2023)

引用 0|浏览4
暂无评分
摘要
Abstract Forecasting volcanic ash atmospheric pathways is of utmost importance for aviation. Volcanic ash can interfere with aircraft navigational instruments and can damage engine parts. Early warning systems, activated after volcanic eruptions can alleviate the impacts on aviation by providing forecasts of the volcanic ash plume dispersion. The quality of these short-term forecasts is subject to the accuracy of the meteorological wind fields used for the initialization of regional models. Here, we use wind profiling data from the first High Spectral Resolution Lidar in Space, Aeolus, to examine the impact of measured wind fields on regional NWP and subsequent volcanic ash dispersion forecasts, focusing on the case of Etna’s eruption on March 2021. The results from this case study demonstrate a significant improvement of the volcanic ash simulation when using Aeolus-assimilated meteorological fields, with differences in wind speed reaching up to 8 m/s when compared to the control run. When comparing the volcanic ash forecast profiles with downwind surface-based aerosol lidar observations, the modeled field is consistent with the measurements only when Aeolus winds are assimilated. This result clearly illustrates the potential and importance of wind profiling from space for volcanic ash forecasting and hence aviation safety.
更多
查看译文
关键词
volcanic ash,aeolus impact,early warning systems,early warning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要