Numerical investigation of ammonia-rich combustion produces hydrogen to accelerate ammonia combustion in a direct injection SI engine

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY(2024)

引用 0|浏览6
暂无评分
摘要
Ammonia is a carbon-free fuel with significant potential to minimize carbon emissions. However, ammonia has weak combustion properties, necessitating more study to improve its combustion performance in engines. A numerical simulation was conducted to evaluate the impact of fuel composition and injection-ignition synergy strategy on the performance of an ammonia-hydrogen spark ignition engine with liquid ammonia direct injection and hydrogen port injection. Specifically, two distinct injection modes were investigated: injection after intake valve close (IAIVC) and injection before top dead center (IBTDC). The outcomes reveal that the IBTDC mode generates a strong stratification of ammonia near the top dead center, resulting in ammonia-rich combustion, then leading to enriched hydrogen production and finally enhancing ammonia combustion and shorting the combustion duration. Liquid ammonia in-cylinder direct injection reduces the combustion temperature and decreases NO emissions. Optimizing the injection timing and spark timing based on a split injection strategy results in lower fuel consumption and emissions. Specifically, NO emissions decrease from 30.5 g/kWh to 21.7 g/kWh at a similar ITE (=43.5%), and ITE increased from 43.3% to 44.3% for similar NO emission (=30.0 g/kWh), respectively, with the reduction in both NH3 and N2O emissions. (c) 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Ammonia -hydrogen combustion,Ammonia -direct injection,Injection strategy,Emissions,CFD simulation,Abbreviations
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要